Rank of convex combinations of matrices
نویسنده
چکیده
where T and S are diagonal m.by.m and n-by-n real matrices, respectively with diagonal entries from [0, 1]. Our goal is to characterize the above sets with respect to the inheri tance of rank r , which is meant that each matr ix f rom these sets is of rank r . It should b e noted that, for square and nonsingular A and B, nonsingulari ty o f our sets has been studied in [2]. We shall dose this section with an extract o f results f rom [2] which are basic for our considerations.
منابع مشابه
Convex combinations of harmonic shears of slit mappings
In this paper, we study the convex combinations of harmonic mappings obtained by shearing a class of slit conformal mappings. Sufficient conditions for the convex combinations of harmonic mappings of this family to be univalent and convex in the horizontal direction are derived. Several examples of univalent harmonic mappings constructed by using these methods are presented to illustrate...
متن کاملSingular values of convex functions of matrices
Let $A_{i},B_{i},X_{i},i=1,dots,m,$ be $n$-by-$n$ matrices such that $sum_{i=1}^{m}leftvert A_{i}rightvert ^{2}$ and $sum_{i=1}^{m}leftvert B_{i}rightvert ^{2}$ are nonzero matrices and each $X_{i}$ is positive semidefinite. It is shown that if $f$ is a nonnegative increasing convex function on $left[ 0,infty right) $ satisfying $fleft( 0right) =0 $, then $$2s_{j}left( fleft( fra...
متن کاملOn the stability of continuous-time positive switched systems with rank one difference
Continuous-time positive systems, switching among p subsystems whose matrices differ by a rank one matrix, are introduced, and a complete characterization of the existence of a common linear copositive Lyapunov function for all the subsystems is provided. Also, for this class of systems it is proved that a well-known necessary condition for asymptotic stability, namely the fact that all convex ...
متن کاملConvex Nonnegative Matrix Factorization with Rank-1 Update for Clustering
In convex nonnegative matrix factorization, the feature vectors are modeled by convex combinations of observation vectors. In the paper, we propose to express the factorization model in terms of the sum of rank-1 matrices. Then the sparse factors can be easily estimated by applying the concept of the Hierarchical Alternating Least Squares (HALS) algorithm which is still regarded as one of the m...
متن کاملOn higher rank numerical hulls of normal matrices
In this paper, some algebraic and geometrical properties of the rank$-k$ numerical hulls of normal matrices are investigated. A characterization of normal matrices whose rank$-1$ numerical hulls are equal to their numerical range is given. Moreover, using the extreme points of the numerical range, the higher rank numerical hulls of matrices of the form $A_1 oplus i A_2$, where $A_1...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Reliable Computing
دوره 2 شماره
صفحات -
تاریخ انتشار 1996